Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guo-Bing Yan, Ming-Hua Yang* and Yun-Fa Zheng

Department of Chemistry, Lishui College, 323000 Lishui, ZheJiang, People's Republic of China

Correspondence e-mail: zjls05@56.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.035$
$w R$ factor $=0.105$
Data-to-parameter ratio $=13.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
\{4,6-Dichloro-2-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)iminomethyl]phenolato$\left.\kappa^{2} N, O\right\}$ copper(II)

In the mononuclear title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\right]$, the $\mathrm{Cu}^{\mathrm{II}}$ atom is coordinated by two N atoms and two O atoms from the Schiff base ligands in a square-planar geometry, with a dihedral angle between the two chelate NCuO planes of 31.57 (3) ${ }^{\circ}$. The Cu atom is located on a twofold axis.

Comment

There has been continuous interest in bis-bidentate Schiff base $\mathrm{Cu}^{\text {II }}$ complexes because, in the solid state, the ligands display a wide range of geometric arrangements around copper, from ideal trans-square-planar to deformed tetrahedral geometry (Bluhm et al., 2003; Lacroix et al., 2004). In investigations of these complexes based on bis-bidentate Schiff base ligands, both electronic effects (Maslen \& Waters, 1975) and crystal packing (Panova et al., 1980) have been invoked as the driving forces responsible for the distortion. In this paper, we report the synthesis and crystal structure of the title complex, (I).

The Cu atom is located on a twofold axis, and it is coordinated in a square-planar geometry, defined by two O atoms and two N atoms from the ligands (Fig. 1). The dihedral angle between the two ligand coordination planes $[\mathrm{Cu} 1 / \mathrm{N} 1 / \mathrm{O} 1$ and $\mathrm{Cu} 1 / \mathrm{N} 1 A / \mathrm{O} 1 A$; symmetry code: $\left.(A)-x, y, \frac{1}{2}-z\right]$ is $31.57(3)^{\circ}$. The bond lengths and angles at the $\mathrm{Cu}^{\mathrm{II}}$ atom are given in Table 1 and the torsion angle $\mathrm{C} 17-\mathrm{C} 18-\mathrm{N} 1-\mathrm{C} 1$ is 177.95 (2) ${ }^{\circ}$. The packing is governed by weak hydrogen bonds (Table 2 and Fig. 2).

Experimental

The title compound was prepared by the addition of $\left[\mathrm{Cu}(\mathrm{OAc})_{2}\right]$ (0.5 mmol) and 4-(3,5-dichloro-2-hydroxylbenzylideneamino)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one (1 mmol) to a hot aqueous ethanol solution $(50 \%, 30 \mathrm{ml})$. The mixture was stirred for 10 h and filtered. The filtrate was then added to a mixed solvent ($\mathrm{EtOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1,10 \mathrm{ml}$), and dark-blue single crystals were obtained at room temperature over a period of days.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=813.98$
Monoclinic, $C 2 / c$
$a=23.4341$ (17) \AA
$b=6.7434(5) \AA$
$c=22.6048(16) \AA$
$\beta=91.570(1)^{\circ}$
$V=3570.8(4) \AA^{3}$

Data collection

Bruker APEX-II area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.736, T_{\text {max }}=0.885$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0692 P)^{2}\right. \\
& \quad+0.3862 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.55 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.105$
$S=1.08$
3172 reflections
233 parameters
H-atom parameters constrained
Table 1
Selected geometric parameters $\left({ }^{(},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.8835(15)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$1.9587(17)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1$	$154.58(11)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$93.73(7)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$90.65(7)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$159.96(11)$

Symmetry code: (i) $-x, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C11-H11 $\cdots \mathrm{O} 2$	0.93	2.49	$2.950(3)$	111
C5-H5A $^{\mathrm{ii}}$	0.96	2.46	$3.352(3)$	154

Symmetry code: (ii) $-x,-y,-z$.
H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) and $0.96 \AA$ (methyl), and refined in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic and $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: $A P E X 2$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: APEX2; software used to prepare material for publication: APEX2.

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids. [Symmetry code: (A) $-x, y, \frac{1}{2}-z$.]

Figure 2
A packing diagram of the title complex.

The authors are grateful to the Natural Science Foundation of Zhejiang Province (No. M203052) and the Research Foundation of Lishui University (No. FC06002) for financial support.

References

Bluhm, M. E., Ciesielski, M., Görls, H., Walter, O. \& Döring, M. (2003). Inorg. Chem. 42, 8878-8885.
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Lacroix, P. G., Averseng, F., Malfant, I. \& Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825-3835.
Maslen, H. S. \& Waters, T. N. (1975). Coord. Chem. Rev. 17, 137-176.
Panova, G. V., Vikulova, V. M. \& Potapov, V. M. (1980). Russ. Chem. Rev. 49, 655-667.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

